Part Number Hot Search : 
04A12 636S3C 20B1T TA2024B BD790 SL74HCT CRBV55B PCF2113X
Product Description
Full Text Search
 

To Download IRG41BC30UD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irg4ibc30ud insulated gate bipolar transistor with ultrafast soft recovery diode features features features features features e g n-channel c v ces = 600v v ce(on) typ. = 1.95v @v ge = 15v, i c = 12a ultrafast copack igbt 7/17/2000 pd91753a parameter typ. max. units r jc junction-to-case - igbt ??? 2.8 r jc junction-to-case - diode ??? 4.1 c/w r ja junction-to-ambient, typical socket mount ??? 65 wt weight 2.0 (0.07) ??? g (oz) thermal resistance to-220 fullpak www.irf.com 1 parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25 c continuous collector current 17 i c @ t c = 100 c continuous collector current 8.9 i cm pulsed collector current  92 a i lm clamped inductive load current  92 i f @ t c = 100 c diode continuous forward current 8.5 i fm diode maximum forward current 92 visol rms isolation voltage, terminal to case  2500 v v ge gate-to-emitter voltage 20 p d @ t c = 25 c maximum power dissipation 45 p d @ t c = 100 c maximum power dissipation 18 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf  in (1.1 n  m) absolute maximum ratings w  2.5kv, 60s insulation voltage   4.8 mm creapage distance to heatsink  ultrafast: optimized for high operating frequencies 8-40 khz in hard switching, >200 khz in resonant mode  igbt co-packaged with hexfred tm ultrafast, ultrasoft recovery antiparallel diodes  tighter parameter distribution  industry standard isolated to-220 fullpak tm outline benefits  simplified assembly  highest efficiency and power density  hexfred tm antiparallel diode minimizes switching losses and emi
irg4ibc30ud 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ??? 50 75 i c = 12a qge gate - emitter charge (turn-on) ??? 8.1 12 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) ??? 18 27 v ge = 15v t d(on) turn-on delay time ??? 40 ??? t j = 25 c t r rise time ??? 21 ??? ns i c = 12a, v cc = 480v t d(off) turn-off delay time ??? 91 140 v ge = 15v, r g = 23 ? t f fall time ??? 80 130 energy losses include "tail" and e on turn-on switching loss ??? 0.38 ??? diode reverse recovery. e off turn-off switching loss ??? 0.16 ??? mj see fig. 9, 10, 11, 18 e ts total switching loss ??? 0.54 0.9 t d(on) turn-on delay time ??? 40 ??? t j = 150 c, see fig. 9, 10, 11, 18 t r rise time ??? 22 ??? ns i c = 12a, v cc = 480v t d(off) turn-off delay time ??? 120 ??? v ge = 15v, r g = 23 ? t f fall time ??? 180 ??? energy losses include "tail" and e ts total switching loss ??? 0.89 ??? mj diode reverse recovery. l e internal emitter inductance ??? 7.5 ??? nh measured 5mm from package c ies input capacitance ??? 1100 ??? v ge = 0v c oes output capacitance ??? 73 ??? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ??? 14 ??? ? = 1.0mhz t rr diode reverse recovery time ??? 42 60 ns t j = 25 c see fig. ??? 80 120 t j = 125 c 14 i f = 12a i rr diode peak reverse recovery current ??? 3.5 6.0 a t j = 25 c see fig. ??? 5.6 10 t j = 125 c 15 v r = 200v q rr diode reverse recovery charge ??? 80 180 nc t j = 25 c see fig. ??? 220 600 t j = 125 c 16 di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery ??? 180 ??? a/s t j = 25 c see fig. during t b ??? 120 ??? t j = 125 c 17 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage ? 600 ??? ??? vv ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ??? 0.63 ??? v/ cv ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ??? 1.95 2.1 i c = 12a v ge = 15v ??? 2.52 ??? vi c = 23a see fig. 2, 5 ??? 2.09 ??? i c = 12a, t j = 150 c v ge(th) gate threshold voltage 3.0 ??? 6.0 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ??? -11 ??? mv/ cv ce = v ge , i c = 250a g fe forward transconductance  3.1 8.6 ??? sv ce = 100v, i c = 12a i ces zero gate voltage collector current ??? ??? 250 a v ge = 0v, v ce = 600v ??? ??? 2500 v ge = 0v, v ce = 600v, t j = 150 c v fm diode forward voltage drop ??? 1.4 1.7 v i c = 12a see fig. 13 ??? 1.3 1.6 i c = 12a, t j = 150 c i ges gate-to-emitter leakage current ??? ??? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
irg4ibc30ud www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 0.1 1 10 100 0.1 1 10 ce c i , collector-to-emitter current (a) v , collector-to-em itter volta g e (v) t = 150 c t = 25 c j j v = 1 5 v 20 s pulse w idth ge a 0.1 1 10 100 5 6 7 8 9 10 11 12 c i , collector-to-em itter current (a) ge t = 25 c t = 150 c j j v , g a te -to-e m itte r vo lta g e (v) a v = 10 v 5 s pulse w idth cc 0.1 1 10 100 0 2 4 6 8 10 12 f, frequency (khz) load current (a) for both: duty cycle: 50% t = 125 c t = 9 0 c gate drive as specified sink j power dissipation = w 60% of rated voltage i ideal diodes square wave: 13
irg4ibc30ud 4 www.irf.com fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 1.5 2.0 2.5 3.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 ce v , collector-to-em itter voltage (v) v = 1 5 v 80 s pulse w idth ge a t , junction temperature ( c) j i = 2 4 a i = 12a i = 6 .0 a c c c 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10  notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c  p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50  single pulse (thermal response) 25 50 75 100 125 150 0 4 8 12 16 20 t , case temperature ( c) maximum dc collector current(a) c
irg4ibc30ud www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 400 800 1200 1600 2000 1 10 100 ce c, capacitance (pf) v , c ollector-to-em itter volta g e (v) a v = 0v, f = 1mhz c = c + c , c shorte d c = c c = c + c ge ies ge gc ce res gc oes ce gc c ies c re s c oes 0 4 8 12 16 20 0 10 20304050 ge v , g ate-to-em itter voltage (v ) g q , t otal g ate c ha r g e (nc) a v = 400v i = 1 2 a ce c total switchig losses (mj) 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 a t , junction temperature ( c ) j r = 23 ? v = 15v v = 480v i = 24a i = 12a i = 6.0a g ge cc c c c total switchig losses (mj) 0.50 0.52 0.54 0.56 0.58 0.60 0 102030 405060 g a r , gate resistance ( ? ) v = 480v v = 15v t = 25 c i = 12a cc ge j c
irg4ibc30ud 6 www.irf.com 0.1 1 10 100 1000 1 10 100 1000  v = 20v t = 125 c ge j o  safe operating area v , collector-to-emitter volta g e (v) i , collector current (a) ce c fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 fm f instantaneous forward current - i (a) forward volta g e drop - v ( v ) t = 150 c t = 125 c t = 25 c j j j 0.0 0.4 0.8 1.2 1.6 2.0 0102030 c i , collector-to-emitter current ( a ) a r = 23 ? t = 150 c v = 480v v = 15v g j cc ge total switchig losses (mj)
irg4ibc30ud www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 200 400 600 100 1000 f di /dt - ( a/ s ) rr q - (nc) i = 6.0a i = 1 2a i = 24a v = 200v t = 125 c t = 25 c r j j f f f 10 100 1000 10000 100 1000 f d i /d t - ( a/ s ) di(rec)m/dt - (a/s) i = 12a i = 24a i = 6.0a f f f v = 200v t = 125 c t = 25 c r j j 0 40 80 120 160 100 1000 f di /dt - ( a/ s ) t - (ns) rr i = 24a i = 1 2a i = 6.0a f f f v = 200v t = 125 c t = 25 c r j j 1 10 100 100 1000 f di /dt - ( a/ s ) i - (a) ir rm i = 6.0a i = 12a i = 24a f f f v = 200v t = 125 c t = 25 c r j j
irg4ibc30ud 8 www.irf.com fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge
irg4ibc30ud www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25 c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
irg4ibc30ud 10 www.irf.com   repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20)  v cc =80%(v ces ), v ge =20v, l=10h, r g = 23 ? (figure 19)  pulse width 80s; duty factor 0.1%.  pulse width 5.0s, single shot.  t = 60s, f = 60hz 
   
  lead assignments 1 - g a te 2 - d r a in 3 - s o u r c e notes: 1 dimensioning & tolerancing p e r a n s i y 1 4.5 m , 19 82 2 controlling dimension: inch. d c a b minimum creepage distance betw een a-b-c-d = 4.80 ( .1 89 ) 3x 2.85 ( .11 2 ) 2.65 ( .10 4 ) 2.80 ( .110 ) 2.60 ( .102 ) 4.80 ( .189 ) 4.60 ( .181 ) 7.10 ( .2 8 0 ) 6.70 ( .2 6 3 ) 3.40 ( .1 3 3 ) 3.10 ( .1 2 3 ) ? - a - 3.70 ( .1 4 5 ) 3.20 ( .1 2 6 ) 1.15 ( .04 5 ) m in . 3.30 ( .1 30 ) 3.10 ( .1 22 ) - b - 0.90 ( .0 35 ) 0.70 ( .0 28 ) 3x 0.25 ( .010 ) m a m b 2.54 ( .100 ) 2x 3x 13.70 ( .5 40 ) 13.50 ( .5 30 ) 16.00 ( .6 30 ) 15.80 ( .6 22 ) 1 2 3 10.60 ( .41 7 ) 10.40 ( .40 9 ) 1.40 ( .055 ) 1.05 ( .042 ) 0.48 ( .019 ) 0.44 ( .017 ) lead assigments 1- gate 2- collector 3- emitter ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 ir european regional centre: 439/445 godstone rd, whyteleafe, surrey cr3 obl, uk tel: ++ 44 (0)20 8645 8000 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 (0) 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 011 451 0111 ir japan: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo 171 tel: 81 (0)3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 (0)838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673 tel: 886-(0)2 2377 9936 data and specifications subject to change without notice. 7/00


▲Up To Search▲   

 
Price & Availability of IRG41BC30UD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X